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Abstract. One of the most promising use-cases for machine learning
in industrial manufacturing is the early detection of defective products
using a quality control system. Such a system can save costs and re-
duces human errors due to the monotonous nature of visual inspections.
Today, a rich body of research exists which employs machine learning
methods to identify rare defective products in unbalanced visual qual-
ity control datasets. These methods typically rely on two components:
A visual backbone to capture the features of the input image and an
anomaly detection algorithm that decides if these features are within
an expected distribution. With the rise of transformer architecture as
visual backbones of choice, there exists now a great variety of different
combinations of these two components, ranging all along the trade-off
between detection quality and inference time. Facing this variety, prac-
titioners in the field often have to spend a considerable amount of time
on researching the right combination for their use-case at hand. Our
contribution is to help practitioners with this choice by reviewing and
evaluating current vision transformer models together with anomaly de-
tection methods. For this, we chose SotA models of both disciplines,
combined them and evaluated them towards the goal of having small,
fast and efficient anomaly detection models suitable for industrial manu-
facturing. We evaluated the results of our experiments on the well-known
MVTecAD and BTAD datasets. Moreover, we give guidelines for choos-
ing a suitable model architecture for a quality control system in practice,
considering given use-case and hardware constraints.

Keywords: Vision Transformer · Industrial Quality Control · Anomaly
Detection

1 Introduction

In industrial manufacturing, early detection of defective products saves mate-
rial and costs and enhances public trust in the manufacturer. Automating this
process increases scalability, saves labour costs and reduces human error due to
the monotonous nature of visual inspections [27]. To this end, the possibility
of automating this process using machine learning methods has been subject of
extensive research [24]. Anomaly detection (AD) in machine learning addresses
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the challenge of identifying rare defective products in unbalanced datasets, often
utilizing unsupervised or semi-supervised training strategies. While AD refers
to image-level classification of samples as either normal or anomalous, anomaly
localization (AL) aims to identify anomalies on a more fine-grained level and indi-
cates where the anomalous feature was detected within the image. This provides
interpretability of the model’s decisions, facilitating human-in-the-loop control
by allowing focus on the anomalous regions. Unsupervised AD architectures
typically consist of an image encoding backbone and a detection algorithm that
identifies if the extracted features are within an expected distribution. Since
the publication of ViT in 2020 [9], vision transformers have emerged as an al-
ternative to traditional CNN backbones, offering enhanced global dependency
capture, making them particularly interesting for AD tasks. Emerging hierar-
chical transformer architectures promise to solve the problem of their excessive
size by keeping their advantages [26]. Many approaches to solve AD problems
in existing literature consider monolithic vision transformer but not hierarchical
ones [21,31]. We believe hierarchical vision transformer models can be a great
benefit for industrial visual quality control regarding their computational and
memory demands. Moreover, we want to help practitioners with their choice of
the best setup by reviewing and evaluating current vision transformer models
together with AD methods. Our contributions can be summarized as follows:

1. First, we provide a comprehensive overview of current state-of-the-art (SotA)
hierarchical vision transformer models and approaches for the task of visual
quality control.

2. Second, we reproduce two of the most promising AD methods and combine
them with different visual backbones to find small, fast and efficient AD
models, suitable for industrial manufacturing, and evaluate our results on
the well-known MVTecAD and BTAD datasets.

3. At last, we recommend guidelines for choosing a suitable architecture for
deploying a quality control system in practice considering given use-case
and hardware constraints.

The rest of this paper is structured as follows: In the next section, we review ex-
isting work regarding visual backbones, AD and AL. Section 3 describes the setup
we chose for our experiments, which are then discussed and analysed in Section 4.
Our source code is available on GitHub (https://github.com/Miwri/vit-ad).

2 Related Work

2.1 Vision Backbone

Vision transformers have become a powerful alternative to CNNs for various com-
puter vision tasks, with many studies highlighting their proficiency in capturing
global dependencies, which are essential for AD and AL workloads [20,30,6,21,31].
Monolithical vision transformers such as ViT follow the architecture of NLP
transformers, offering performance competitive with CNNs like ResNet [12] but
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demand more training data, memory, and longer inference times. By applying
an enhanced training strategy using a teacher model and a distillation token to
match it’s output, Touvron et al. [25] published DeiT, an improved monolithic
transformer that is smaller than ViT, demands less training data and has a
superior performance. However, in light of the limited computational resources
in production settings, the light-weight class of hierarchical vision transformers
gained interest in recent work [26,28,19,16,33]. The main idea is to address the
poor scaling of monolithic transformers to high-resolution images by reducing the
image size across layers. This leads to models that need less time and resources
for training and inference but perform equal to existing vision transformer mod-
els [26]. HaloNet [26] is one of the first approaches of using size-reducing layers in
combination with attention in the encoder, inspired by the architecture used in
ResNet [12]. Wang et al. introduced PVT, a model with an attention backbone
suitable not only for classification but also for dense prediction tasks such as
object detection and segmentation [28]. Zhang et al. [33] propose with NesT a
lightweight yet not overly complex architecture by applying the ViT architec-
ture [9] on distinct subsets (blocks) of patches and subsequently reducing groups
of four neighbouring blocks into one. Liu et al. developed a similar approach to
PVT but highlight, that their model has linear instead of quadratic complexity
when it comes to scaling with image size [19]. Their SwinTransformer model al-
ternates between a window-based and shifted window-based self-attention, which
computes attention locally on a fixed number of patches within non-overlapping
windows. To enable cross-window connections, non-overlapping neighboring win-
dows from the previous layer are included in the calculations of each block. For
dimension reduction, a patch merging layer is added before each stage, which it-
self can consist of two or more transformer blocks. Li et al. [16] highlight the issue
of multi-stage vision transformers with sparse self-attention failing to detect fine-
grained inter-region dependencies. They introduce a label-free knowledge distil-
lation strategy, using altered image views for training. Their approach, dubbed
EsViT, combines view and region-level prediction losses. Their training proce-
dure can be applied to various transformer architectures and pre-trained weights
are available for [19,28] and [25]. Li et al. [18] introduced the EfficientFormer,
an approach that is comparable in inference speed with lightweight CNN imple-
mentations such as MobileNetV2 [23] and thus can be used in edge applications.
To achieve this, they observed the main bottlenecks (e.g linear projection layers
for patch embeddings, reshape operations) in the existing vision transformers
and tried to improve efficiency with a few architecture modifications.

2.2 Anomaly Detection and Localization

There are several different categories of approaches for implementing AD and
AL in practice [24]. Reconstruction-based methods use an auto-encoder with
the objective to compress the input to a lower dimensional latent space and
subsequently reconstruct the original image, using the reconstruction error as
anomaly score. They tend to deliver weaker results than other categories [30].
Self-supervised learning methods try to use synthetic data to train a model,
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which requires costly data augmentation strategies that often heavily depend on
expert knowledge. In contrast, promising representation-based approaches try
to model the distribution of normal features and classify defects as samples that
are in regions with low probability density or outside of the modeled distribu-
tion [24]. Roth et al. [22] achieved excellent detection scores with PatchCore by
using a memory bank and measuring the distance of extracted features to the
nearest feature in the bank. Bae et al. [2] enhance PatchCore with position and
neighborhood information to improve the detection of global anomalies. Hyun et
al. introduce ReConPatch, that uses multiple levels of a CNN encoder as base to
create patch-level features, also enhanced by neighborhood information [13]. Li
et al. introduce SemiREST, a model that uses supervised and semi-supervised
learning in combination with the SwinTransformer architecture [17].

Gaussian Mixture Models (GMM) are based on the assumption, that the un-
derlying distribution of normal features is more complex than a single Gaussian
distribution and thus learns a set of distributions [5]. At inference time, a GMM
estimates the probability that a feature belongs to the set of learned distribu-
tions [21]. Zong et al. [34] applied an auto-encoder model for AD on non-image
data, integrating a GMM for both dense prediction and regularization to avoid
local minima in training. Zhang et al. [32] developed a three-component model
for AD in high-resolution images, featuring class-specific training and evaluation.
This model includes a patch embedding creator, a GMM for density prediction,
and a multi-layer perceptron (MLP) for location prediction, jointly trained end-
to-end. This approach yields a smaller model compared to pre-trained alterna-
tives. Mishra et al. [21] and Choi et al. [6] advanced auto-encoder networks for
AD by integrating them with a GMM and using a vision transformer encoder,
respectively. Mishra et al.’s VT-ADL model involves end-to-end training, feed-
ing encoder output patch embeddings to a GMM for Gaussian calculations and
a CNN decoder for reconstruction. They use mean squared error, log-likelihood
and structural similarity (SSIM) losses as training objective and for the anomaly
map generation. Choi et al. [6] adopt a similar methodology but employ a varia-
tional auto-encoder and a pre-trained transformer, emphasizing a workflow from
image collection to expert validation. Both approaches underscore transformers’
superiority in capturing global dependencies over CNNs. Fan et al. [10] integrate
GMMs with variational auto-encoders for pinpointing anomalies in surveillance
video streams, employing a model that samples from multiple distributions to
accommodate complex feature spaces.

Normalizing Flow models (NF) are located in two categories, generative mod-
els and representation based approaches and are an efficient alternative to GMMs
for estimating complex distributions. They have seen increasing popularity for
AD due to their fast inference and strong downstream performance. They esti-
mate the exact likelihood of features by following any arbitrary distribution and
computing the likelihood by using the KL divergence between a prior and a base
distribution [11,8]. Gudovskiy et al. [11] introduce CFLOW-AD, an AD model
pairing a pre-trained ResNet encoder with a conditional NF, training indepen-
dently for each class with fixed position embeddings. Yu et al. [31] critique fixed



ViT Models for Industrial Visual Quality Control 5

position embeddings for complex datasets, introducing FastFlow, an AD model
with a 2D NF that eliminates the need for positional encoding by preserving
spatial structures. FastFlow uses a ResNet or a vision transformer encoder with
selective embedding stages. The authors report AUROC scores on, among oth-
ers, the MVTecAD and BTAD dataset, achieving speed gains over the previous
models in [11] and [22]. Lei et al. [15] improve results with pyramid NFs and
end-to-end trained 1 × 1 CNNs, while Kim et al. [14] enhance FastFlow and
CFLOW-AD stability and performance with a novel training approach.

3 Experimental Setup

3.1 Backbone Architectures

Because of their performance advantages, our analysis primarily focuses on
transformer-based architectures. Given the importance of hardware efficiency
in practical applications, the lightweight and efficient hierarchical transformers
are of particular interest in our study. For a comprehensive perspective, we also
evaluate a classical ResNet-50 model as a baseline. We chose this ResNet vari-
ant since it is a common choice when making a trade-off between the quality
of representations and computational cost [11,31]. The DeiT architecture was
chosen as an example of a monolithic vision transformer that closely follows the
architecture of the original ViT proposed in [9], but achieves better performance
by using knowledge distillation [25]. We used the largest variant DeiT-base in
our experiments since it has the highest performance and was also used in [31].
Moreover, we selected the EsViT approach to investigate the performance of
hierarchical transformer versions. We used the variant based on the Swin-T ar-
chitecture since it has a relatively small number of parameters which is compa-
rable to ResNet-50. A window size of 14 achieved the best results in [16], hence
we adopted this choice for our experiments. EfficientFormer is another efficient
transformer suitable for settings with limited computational resources. To have
a comparable parameter size to ResNet-50 and make a good trade-off between
efficiency and performance, we picked the medium-sized model variant L3. A
comparison of the number of parameters of the different image encoder models
is shown in Table 1.

Backbone GMM NF
Pa PE FM Pa Pa

ResNet 50 28M [512,1024,2048] [28,14,7] 525M 115M
DeiT B 87M 768 14 118M 31M
EsViT T 27M 768 7 118M 31M
EffFormer L3 31M 512 7 53M 14M

Table 1: Model configurations with parameter sizes (Pa) in million parameters,
patch embedding size (PE) and size of the embedding feature maps (FM). The
sizes of GMM and NF are dependent on the image backbone.
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3.2 Anomaly Detection Architectures

Based on the feature vector produced by the vision backbone a classifier needs
to distinguish normal examples from defective anomalies. We focused our exper-
iments on GMMs, which were one of the first approaches using a vision trans-
former backbone and NFs, which showed promising performance in AD tasks (as
discussed in Section 2.2).

The performance of a GMM usually improves with a higher number of Gaus-
sians but the use of a fully-connected MLP for every component can make them
prohibitively expensive. Figure 1 illustrates how we used image-processing back-
bones together with a GMM to perform AD in the case of DeiT. The procedure
for the other transformer backbones is analogous with differing numbers for the
embedding size. With ResNet, we followed the approach in [11] and trained two
GMMs for the output of the last two blocks of ResNet-50 to capture global and
local dependencies. Based on the patch embeddings we trained three MLPs rep-

Fig. 1: Gaussian Mixture Model in combination with DeiT encoder.

resenting the means (µ), standard deviations (σ) and weights (π) of the Gaussian
Mixture components to capture the distribution of the normal examples. The
size of the MLPs depends on the number of Gaussians. During training we min-
imized the negative log-likelihood, while for inference we calculated an anomaly
score for every patch as follows: The log-likelihood is normalized to a value be-
tween zero and one using min-max normalization over the batch to obtain a
pseudo-probability p. Our anomaly score is defined as a = 1− p. To obtain a 2D
anomaly map we reshaped the 196 patches to a 14×14 matrix and used bilinear
interpolation to project the anomaly map to our original image size of 224×224.
An image is deemed anomalous if its highest patch anomaly score surpasses a
specific threshold, which is empirically determined using the validation set, as
suggested by You et al. [30].
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Normalizing Flows were chosen as models in view of limited compute. Our
setup of a NF model combined with a DeiT image-processing backbone is visu-
alized in Figure 2. The setup is analogous for other transformer backbones. For
ResNet, we used the output of the last three blocks and averaged the results,
similar to the GMM approach. The patch embeddings produced by the vision

Fig. 2: NF model with the DeiT encoder. Each FrEIA Block [1] has a subnetwork
with hidden dimension h, calculated with the hidden ratio from table 2.

backbone are passed through the NF model consisting of 20 flow steps for the
transformer-based methods and eight for ResNet-50, due to hardware limita-
tions. Further, we chose a hidden ratio h = 0.16. Each flow step consists of a
subnetwork of alternating 3× 3 and 1× 1 convolutional layers. These hyperpa-
rameters follow the recommendations of [31]. For the other hyperparameters see
Table 2. The flow steps were realized by AllInOneBlocks of the FrEIA frame-
work [1]. The NF model outputs the log determinant of the Jacobian and the
transformed patches z. During training those two outputs are used for the loss
objective. At inference, log |detJ | and z are used to calculate the likelihood
which is then used as anomaly map for localization, by upsampling the patches
with bilinear interpolation. For more details on the NF architecture see [31].

3.3 Datasets

We evaluate our methods on two datasets that are as close to real-life as possible.
The BTAD dataset consists of three different types of real-world industrial

products and has a total of 2830 RGB images with a resolution of between
600 × 600 and 1600 × 1600 [21]. Each product category is split into a train
set, consisting of only normal images and a test set, which includes normal and
anomalous images. In total there are 1799 training images, the rest are test
images. The proportion of anomalous images in the test set varies from 9% to
87% depending on the class. A ground-truth mask for each anomalous image is
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provided that can be used for AL. There is no further distinction between body
and surface defect anomaly classes in the labels.

The MVTecAD dataset consists of 15 different product categories or textures
and has a total of 5354 images [3]. Three classes are provided as grayscale images
which is common in some real-life settings. The other classes are RGB images.
The resolution varies between 700× 700 and 1024× 1024 and some classes have
more examples than others. Each product category is split into a training set
with only normal instances and a test set that also contains anomalies. In total
there are 3629 training and 1725 test examples. The proportion of abnormal
images is, in most cases, about two to three times higher than the normal ones
in the test set. The abnormal data is classified into different types of anomalies,
for example in crack, hole, cut and print on the hazelnut class. A ground-truth
mask on pixel-level is given for each abnormal image.

3.4 Implementation Details

Since both datasets do not provide a separate validation set for hyperparameter
tuning and model selection we split the training set into 80% train and 20%
validation data in both cases. We applied Min-Max scaling to every image. The
minimum and maximum values were computed separately for every channel on
the training set. We scaled the input images to an image size of 224× 224 pixels
which is the default training size of most transformer models [9].

Hyperparameters were optimized once for each model using the hazelnut class
of the MVTecAD dataset and the best configuration according to validation loss
is adopted for all other experiments. We chose this class because it has the largest
amount of training samples in the dataset. A summary of the considered hyper-
parameters and the best values found for them are shown in Table 2. Note that
the batch size of the GMM is relatively small due to hardware limitations. We
trained each model separately on every object class for a maximum of 500 epochs
using early stopping based on the validation loss with a patience of 30 epochs.
Only the parameters of the AD models were updated, the image-backbones were
pre-trained on ImageNet1k [7] and kept frozen during training. For evaluation
the model checkpoint with the best validation loss was selected. All models were
trained on a single NVIDIA GeForce RTX 2080 Ti TURBO GPU with 11GB
VRAM.

ad
type

encoder batch
size

learn
rate

weight
decay

number of
gaussians

flow
steps

hidden
ratio

gmm ResNet50 4 1e-4 1e-4 50 - -
Other 8 1e-4 1e-4 100 - -

nf ResNet50 16 1e-4 1e-5 - 8 0.16
EsViT 32 1e-4 1e-5 - 20 0.16
Other 32 1e-3 1e-5 - 20 0.16

Table 2: Hyperparameter configuration of the different models architectures.
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3.5 Metrics

For the evaluation of our approach, we use the AUROC since it is a common
metric for visual quality control [31,2,22,13]. For evaluating AD we consider the
AUROC on image and for AL on pixel level.

As a second metric we use the Per-Region-Overlap (PRO), which measures
the overlap between ground truth and predicted anomalies on a pixel level. To
calculate the PRO-score one needs to set a threshold at which level to classify a
pixel as anomalous. This is usually done based on the ROC considering a trade-
off between acceptable levels of False Positive Rates (FPR) and TPRs. This can
depend on the use case, considering whether it is costly to allow a high FPR
(e.g. if a false positive results in an entire production batch being discarded). All
pixels with anomaly values below the threshold are set to zero, while the rest
keep their original anomaly score. We calculate the area under the PRO-curve up
to a maximum false positive rate of 30% following the procedures of [4] and [21]
for the same datasets. We use the PRO-score to evaluate AL.

Furthermore, we report the precision recall area under curve (PRAUC) as
supplement to the AUROC for a more detailed view of the overall performance
and to compare results with other works that also use this score. PRAUC is only
used to measure image-level AD performance.

3.6 Experiments

Our first goal was to assess if similar outcomes can be achieved as the VT-ADL
architecture by Mishra et al. [21]. While they trained a vision transformer with a
GMM and a CNN from scratch on the BTAD and MVTecAD datasets, we used
a pre-trained DeiT model as a frozen image backbone and trained only a GMM
with the likelihood loss. Chosen for its enhanced performance over ViT, our DeiT
configuration includes twelve layers and twelve heads, versus the six layers and
eight heads used by VT-ADL. We used an image resolution of 224× 224 instead
of 500 × 500 to match the requirements of our pre-trained image encoders and
employed a smaller GMM with only 100 instead of 150 Gaussians according to
our empirical hyperparameter search. Additionally, we attempted to reproduce
Yu et al.’s [31] promising FastFlow results for MVTecAD, despite the absence
of their source code. We followed their experimental details. While the authors
use the 7th DeiT encoder block’s embedding we additionally evaluate a model
version which uses DeiT ’s last layer. For compatability with our pre-trained
backbones we scale the images to a size of 224× 224 instead of 384× 384 pixels.

A second goal was to study the behavior of GMMs and NFs on a more fine-
grained level to find out if there are differences in the performance depending on
the object class. For this experiment we used our setup with a pre-trained DeiT
image encoder and trained and evaluated the 15 classes of the MVTecAD dataset
separately. For the NF model we investigated two different versions, NF i11 which
uses the features from the last layer of the image encoder and NF i7 which uses
the feature maps of the 7th encoder layer. For the sake of completeness we also
compared the performance with the reported results from [21] and from [31].
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vt-adl gmm image pixel nf i11 image pixel
data class prauc pro prauc pro auroc auroc prauc pro auroc auroc
1 99.00 92.00 97.25 78.83 93.25 81.68 99.96 80.59 99.90 84.55
2 94.00 89.00 95.50 92.22 75.29 92.20 96.60 87.58 79.36 87.85
3 77.00 86.00 19.10 90.49 67.18 91.96 96.85 95.68 99.65 95.72
mean 90.00 89.00 70.62 87.18 78.57 88.61 97.80 87.95 92.97 89.37
Table 3: Results on BTAD of VT-ADL [24] and GMM and NF i11 with DeiT.

Third, we examined the performance effects of replacing traditional mono-
lithic transformers with hierarchical versions using the EsVit and the Effi-
cientFormer models described in Section 3.1. We also consider the CNN-based
ResNet-50 backbone as a baseline. As proposed in [11] and discussed in Sec-
tion 3.2, we used the output of several blocks of the ResNet backbone and
averaged the results. In case of the GMM, we trained only two models with 50
Gaussians for the last two blocks, due to hardware limitations. We trained and
evaluated the methods on five selected classes of the MVTecAD dataset. The
classes were chosen separately for both the GMM and the NF i11 approaches
based on the performance of our previous experiment with the DeiT encoder. As
a representative sample for each model, we included classes with high, medium
and low performance according to our experiments. For GMM these are the
classes cable, carpet, grid, hazelnut and tile. For the NF i11 we use the classes
bottle, carpet, hazelnut, leather and screw.

4 Results and Discussion

4.1 Comparison with the VT-ADL and FastFlow models

Table 3 shows that our GMM model performs better than VT-ADL in two of
three classes of the BTAD dataset in the localization task and one class in the
detection class. The bad detection performance on class three may result from
the model highlighting anomalies correctly but also producing spots with high
anomaly scores in normal images (see Figure 3). This results in a high false
positive rate when using the maximum of the patch anomaly scores to classify
the image. Considering also the composition of the test dataset for this class
can explain the gap between detection and localization performance, since it has
about ten times more normal than anomalous samples. The overall localization
performance of our model on the MVTecAD dataset is higher than the one of
VT-ADL. These results show, that using a pre-trained transformer encoder in
scenarios with relatively small datasets can be beneficial compared to training a
transformer end-to-end.

Table 4 shows, that our implementation of the NF model could not reach the
values reported for FastFlow in [31]. However, the use of only 80% of the training
data and a lower image size may have negatively affected the performance.
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Fig. 3: The third class of the BTAD dataset, processed by the GMM with DeiT.
Anomaly map and ground truth for a defective (left) and normal (right) sample.

4.2 Comparison of GMMs and NF models

architecture nf i11 nf i7 gmm vt-adl FastFlow
dataclass ad al ad al ad al al ad al(auroc)
bottle 99.84 85.95 98.57 93.64 98.49 45.24 94.90 100.00 97.70
cable 94.42 94.68 81.73 84.87 61.94 78.03 77.60 100.00 98.40
capsule 92.94 93.42 92.82 95.04 82.69 93.69 67.20 100.00 99.10
carpet 96.07 95.92 87.40 87.40 97.11 97.06 77.30 100.00 99.40
grid 98.08 93.79 96.66 96.11 76.44 71.21 87.10 99.70 98.30
hazelnut 98.46 95.81 87.18 93.06 65.43 96.86 89.70 100.00 99.10
leather 100.00 88.10 99.97 98.83 98.37 98.62 72.80 100.00 99.50
metal nut 99.71 92.98 87.93 88.69 60.95 84.54 72.60 100.00 98.50
pill 92.17 94.25 81.29 90.83 69.01 91.35 70.50 99.40 99.20
screw 86.53 95.96 77.09 84.00 52.43 46.37 92.80 97.80 99.40
tile 99.96 91.43 96.03 93.47 92.50 90.38 79.60 100.00 96.30
toothbrush 90.83 93.50 88.61 95.24 95.56 95.84 90.10 94.40 98.90
transistor 95.71 96.52 88.21 93.29 76.83 92.31 79.60 99.80 97.30
wood 92.46 87.73 98.25 93.86 93.33 90.66 78.10 100.00 97.00
zipper 96.68 90.91 92.67 97.31 79.28 95.81 80.80 99.50 98.70
mean 95.59 92.73 90.29 92.38 80.02 84.53 80.71 99.37 98.45
std 4.00 3.28 6.92 4.38 15.49 17.41 8.18 1.44 0.94

Table 4: Image AUROC (AD) and PRO (AL) of the NF model with feature maps
from last and seventh DeiT block, the GMM, VT-ADL and FastFlow. Standard
deviation (std) is calculated across classes. FastFlow reported pixel AUROC.

Table 3 and 4 show that the overall performance of the NF model is better
than the GMM. However, the GMM performs better in localization tasks on
most of the surface classes. The high standard deviation between the classes on
MVTecAD for the GMM is mainly caused by the classes bottle and screw, which
could not be learned correctly. The NF-model has a relatively small standard
deviation between the classes and thus is more robust when applied to new
classes. Together with the smaller size this makes it more suitable for a use
in production scenarios. The weakness of NF i11 in localization performance on
some classes can be eliminated when using NF i7 instead (see Table 4). However,
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the overall detection performance of NF i7 is about five percent points less. The
anomaly maps show that when using the last block, the highlighted areas are
more coarse grained but the model is also more certain. Using the seventh block
highlights anomalies more precisely but is also more uncertain and produces
small anomaly spots on anomaly-free images. Regarding the model size (see
Table 1), the NF model has a clear advantage over the GMM.

4.3 Performance of the Backbones

auroc ad pro score
dataclass DeiT EffFormer EsViT ResNet DeiT EffFormer EsViT ResNet
cable 62.00 52.00 89.00 79.00 78.00 81.00 72.00 61.00
carpet 97.00 78.00 93.00 74.00 97.00 86.00 70.00 58.00
grid 66.00 78.00 75.00 68.00 72.00 71.00 61.00 54.00
hazelnut 66.00 54.00 97.00 73.00 97.00 88.00 68.00 51.00
tile 96.00 74.00 99.00 65.00 90.00 74.00 49.00 54.00
mean 77.40 67.20 90.60 71.80 86.80 80.00 64.00 55.60

Table 5: AD and AL score of different backbones for the GMM on MVTecAD.

Table 5 shows that for the GMM the overall localization performance is the
best with the DeiT backbone. It outperforms the hierarchical backbones on all
classes except for the cable class. In contrast, the EsViT model performs best
in three of five classes in the detection task and has the overall best detection
performance. A possible reason for the gap between localization and detection
performance can be seen on the generated anomaly maps in Figure 4. The EsViT
model does locate the anomaly correctly but also highlights large areas in the
background. On the normal image there is no area highlighted at all. A possible
reason for the bad performance of the ResNet backbone is the usage of only 50
Gaussians and two output layers as discussed in Section 3.6.

The results in Table 6 show, that DeiT is the backbone that results in the
best detection performance for the NF model. Nevertheless, EsVit follows with
the second best detection performance. Interestingly, while in general the NF
achieved the best results, for EsViT the GMM resulted in a better performance.
The ResNet backbone outperforms DeiT in two localization tasks but performs
worse in detection tasks. Figure 5 shows the anomaly maps generated with the
different backbones.

Hierarchical transformers create smaller models than CNNs, producing com-
pact, information-rich patch embeddings, as highlighted in Table 1, where the
patch embedding size significantly affects the GMM and NF sizes. Unlike DeiT,
these models are also smaller or equal in size to ResNet. For high-resolution im-
ages, the adequacy of transformer patch embedding for identifying small anoma-
lies needs evaluation. Smaller embeddings can result in coarser feature maps due
to upsampling from the patch embedding level.
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Fig. 4: Anomaly maps for the hazelnut class of a GMM with the backbones DeiT,
EfficientFormer, EsViT and the corresponding ground truth.

auroc ad pro score
dataclass DeiT EffFormer EsVit ResNet DeiT EffFormer EsVit ResNet
bottle 100.00 98.00 93.00 97.00 86.00 79.00 66.00 97.00
carpet 96.00 78.00 87.00 89.00 96.00 78.00 82.00 88.00
hazelnut 98.00 89.00 93.00 91.00 96.00 92.00 73.00 90.00
leather 100.00 77.00 96.00 100.00 88.00 85.00 63.00 97.00
screw 87.00 43.00 65.00 50.00 96.00 60.00 57.00 84.00
mean 96.20 77.00 86.80 85.40 92.40 78.80 68.20 91.20

Table 6: AD and AL score of different backbones for the NF model on MVTecAD.

4.4 Considerations and Limitations for Practical Application

Anomaly maps can be used in various manufacturing scenarios such as expla-
nation of a model’s choice, making decisions based on the anomaly size or to
double check a model’s decision [6]. However, it is important to notice that the
experiments in this work are conducted on benchmark datasets that have high
quality, which is hard to achieve in a real-world scenario. In manufacturing,
metrics should be selected considering the composition of training data and the
severity of false positives and false negatives. These aspects should also be con-
sidered when deciding on the thresholding strategy for the PRO-score and for
AD. Our experiments on the detection performance show, that AUROC score
should be preferred when false-negatives are expensive while PRAUC is more
suitable when false-positives lead to problems. To evaluate the quality of a model
when facing highly imbalanced datasets, both scores should be considered. For
localization tasks, the PRO-score should be preferred. The model selection is
highly influenced by the available data, hardware and real-time requirements. If
enough hardware is available, the superior performance of DeiT or a comparable
monolithic transformer should be chosen. In case of strong hardware limitations
and/or real-time requirements, smaller and faster hierarchical transformer are
the models of choice. Yu et al. report an inference time of eight milliseconds
with DeiT and their FastFlow model [31], what can be regarded as a baseline
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Fig. 5: Anomaly maps for the hazelnut class of the NF model with the backbones
DeiT, EfficientFormer, EsViT, ResNet and the corresponding ground truth.

for hierarchical transformer models. When processing images with a much higher
resolution, adjusting the patch-size might be required and thus a training of the
backbone becomes necessary.

5 Conclusion

In our work, we provided a comprehensive overview of SoTA vision transformer
models and evaluated different paradigms for visual anomaly detection in in-
dustrial visual quality control. We implemented two anomaly detection methods
with four different image encoding backbones, all of them pre-trained on Ima-
geNet1k. We trained our anomaly detection models on the datasets MVTecAD
and BTAD and compared our results with two existing approaches from the
literature. Finally, we discussed important aspects to consider when applying
these approaches to production. We showed that using transformer models can
improve the performance of anomaly detection models and reduce the overall
size compared to ResNet. Moreover, we showed that using pre-trained trans-
former models can have an advantage over training from scratch. Hierarchical
transformer models are worth to evaluate for further use in production scenarios
with limited computational capacity. Future research could perform experiments
with using the output of more than one layer of the encoder model as done with
ResNet and proposed in [29] for their segmentation transformer.
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A Generated anomaly maps from different model
configurations

Fig. 6: Anomaly maps for the classes wood, leather, metal nut, carpet and grid,
from the first row to the last, from the MVTecAD dataset with the NF model
and the DeiT encoder. In each row, the first anomaly map is created with NF
i7, the second with NF i11 and the third image shows the corresponding ground
truth.
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Fig. 7: Anomaly maps for the screw class of the NF model. The used backbones
are from left to right: DeiT, EfficientFormer, EsViT, ResNet and the corre-
sponding ground truth. It can be noted, that DeiT was the only backbone with
which the model was able to capture the small anomaly.

B Class distributions of the used datasets

Fig. 8: Distribution of the different classes of the BTAD dataset.
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Fig. 9: Distribution of the different classes of the MVTecAD dataset.

C Ablation study and production application

Fig. 10: Plots of loss (left) and PRO score (right) for different numbers of Gaus-
sian’s on the data class hazelnut from MVTecAD. The graphics show that there
is no direct relation between PRO score and likelihood loss.
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Fig. 11: High level overview on decisions to be made when applying our ap-
proaches to production scenarios.
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